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Abstract. The existing analogies between the Liénard-Wiechert electromagnetic field (LwF)
produced by a moving charge and the Robinson-Trautman sclutions (gT) of general relativity
are further enlarged by showing that the Petrov type of the bounded part of an Lwr is the
same as that of a generic RT solution. We argue that it is possible to define an electromagnetic
conformal tensor by using a superpotential previously found for the Lwr. The conformal tensor
50 constructed allows us to ‘Petrov-classify’ that part of the LwE.

Analogies between classicai electrodynamics and general relativity have been known for a
long time. It is known, for example, that gravitational effects may be formally described
as if they were electromagnetic phenomena in a medium (Synge 1960, Landau and Lifshitz
1975) and, correspondingly, that electromagnetic phenomena in non-magnetic media may
also be formally described using vacuum Maxwell equations defined on a curved manifold
endowed with a certain metric (Nifiez-Yépez er af 1988). Analogies of this sort have
been studied by Newman (1974) who showed that there are interesting similarities between
the Liénard—Wiechert field (LWF) produced by an accelerated charge and the Robinson—
Trautman metrics (RT) of general relativity (Robinson and Trautman 1962). Our purpose in
this work is to exhibit a further algebraic analogy between the LWF and RT. We show that
it is possible to define an electromagnetic conformal (or Weyl) tensor Cijg; for the bounded
part of an LWF which is generally of type II in the Petrov classification, as is precisely
the case with the most general conformal tensor associated with RT solutions in general
relativity (Kramer ef al 1980, Synge 1964), although we should mention that RT solutions
can also be specialized to Petrov types D, III, N or O. Moreover, we might say that the
non-analogous features found between the LWF and the RT solutions have to do with the
different physical and mathematical structures of the Maxwell and the Einstein fields. The
radiative field in the LW solutions is perhaps the main source of differences between the LWF
and RT metrics. However incomplete, the importance of such analogies has been pinpointed
by Newman (1974).

A charged particle moving arbitrarily in Minkowski 4-space produces at points x” on its
forward light-cone (figure 1) a retarded LW electromagnetic field (LWF) which in Heaviside—
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Lorentz units with c =1 is

FoP(xrs 27 (0)) = = (k‘“ iy LW k‘“i”])
q k (1)

- arb

= Fui i

where g is the particle’s electric charge, z™ () stands for the particle’s position on its world-
line C as a function of the proper-time 7, v* = dz®/dv is the 4-velocity, a® = dvP/dr is
the 4-acceleration, k" = x" — 2/ (v) so that &* is null: &' =0, R = —k v, is the retarded
distance from P to @, W = ~k"a,, B = (I — W)/R is the Plebasiski invariant (Plebariski
1972), U™ = Bv" + a” is the Synge vector (Synge 1970), and X = Xgp — Xpe stands
for antisymmetrization. The first term on the right-hand side of the first line of (1) is the
radiative (R} part of the field in the sense that its energy flux is non-vanishing even at large
distances io the charge, whereas the second term can be regarded as bounded (B) to the
moving point-charge. Such splitting in a sum of terms, one radiative and another bounded
(Teitelboim 1970), is important for the rest of our discussion.

AT O]

Figure 1, Kinematics of the world-line C of the point-charge emitting the Liénard—Wiechert
field. The field-point x™ (P) is on the forward light-cone, z" () (Q) is the charge’s position on the
world-line, o* = dz® /dr is the 4-velocity, «* = dv? /dr is the 4-acceleration, &™ = x7 — 27 (1)
so &7 is null, R = —£"v, is the retarded distance from P to Q, B = (4 + ¥ a)/R and
U =8Bv+d.
3
The information about the electromagnetic field energy and momentum is contained in
a symmetric Maxwell tensor T2 = F2F<® — (F; Fi/yn®®, where n** = diag(—1,1, 1, 1)
is the Minkowski metric. In the case of LWF, t.hlS tensor also splits into a radiative and a
bounded part (Teiteloim 1970, van Weert 1974, Gafioi et al 1993) as follows

T =T+ T3 @
where
qz
ek = wa@a - R2Whke kb (3a)
and
qz nab
T = o (-2- + k9 4 BE“y — R72(1 - ZW)k"k”) (36)

where Xy = Xup + Xp, stands for symmetrization. These two parts of the energy—
momentum tensor are dynamically independent in the sense that each one satisfies separately
the continuity equation

Tih =I5, =0. . @
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It has been shown (van Weert 1974) that (4} implies the existence of a super-potential
Kb generating the Maxwell energy-momentum tensor according to

We are only interested in the bounded part of the energy-momentum tensor so, from
now on and for the sake of simplicity, we remove the subscript B from all the tensors
as the bounded part is the only one in which we are interested. The expression for the
superpotential generating the bounded part of the energy-momentum tensor of LWF is (van
Weert 1974, Aquino et al 1993, Lépez-Bonilla er al 1994, Gaftoi et al 1994)

qZ

4R4
which obviously fulfils equation (5).

An analysis of the superpotential (6) carried out in Newman—Unti coordinates (Aquino
et al 1993) has shown that both the algebraic and the differential properties of K,z
are identical to those of the so-called Lanczos spin-tensor introduced in general relativity
(Lanczos 1962, Ares-de-Parga ef al 1989, Lépez-Bonilla et al 1993). These features hint
toward taking advantage of the similarities between Kp. and the spin-tensor for defining an
electromagnetic Weyl tensor which may allow a Petrov classification of the bounded part of
the LWF to be carried ont. We do this later. However, before doing that, let us point out that
the radiative part of an LWF can also be generated by an appropriate superpotential which,
however, has not the structure of a spin-tensor. Thence, it cannot be used to generate an
electromagnetic conformal tensor or to ‘Petrov-classify’ the radiative part of an LWF.

The superpotential K,p, previously introduced for generating the bounded part of the
energy—momentum tensor for the LWF has been shown to be an intrinsic angular momentum
density for the electromagnetic field of a moving charge (Ares-de-Parga et ! 1990). From
the explicit expression for Ky given in (6), it is simple to check that the supcrpotentlal
has the following properties:

1 ‘
Kgje = (:’E (AW — Supkpk, — dapkipke + nekp — ﬂcbkj) ©)

Kubc = —Kpoe (7(1)
Kupe + Kpeu + Keap = 0 (7b)
b =0 . (Tc)
and ‘
Kubc.c =0 - (7d)

These properties are important for our discussion since they are identical (Lanczos 1962,
Lépez-Bonilla et ol 1993) to those fulfilled by the spin-tensor associated with solutions of
Einstein field equations—and so defined on curved manifolds. The only proviso we need
is to interpret the covariant derivatives required by the spin-tensor as the ordinary partial
derivatives appearing in (7). It is now natural to regard. K;;; as a sort of spin-tensor for the
LWF and use it as the generator of an electromagnetic conformal tensor Ci; appropriate for
the problem. This use of the superpotential may be further justified in the already pinpointed
fact that Kj; is related to the intrinsic angular momentum of the charge’s field. We may
then use the relationship between the spin-tensor and the tensor Cijy in the form valid on
a curved manifold to construct a conformal tensor for the bounded part of an LWF:

erim = Kjrr'.m - Kjrm.r' + Kimj.r  Dimrf + Nim Ki ‘:-.a: — Tij Kmar,.g + nriKmaj,a = Mrm Ki‘},a
@&



L378 Letter to the Editor
where according to (4), K,% , = T,;. We can thus regard the fensor

4 4
Ciirs = Mipp Ty + nj1r Toyy — T Ry — EK.';{:-R..&}

_ 2
2R

.
Nipr ey + 2B(Wrniagikn — vemeriki)

2
+-Ek[:ajavgrkb] + 2Aarnpgiki — abﬂrljkz‘})i|

2Tz
—% Ek[rab]v[t'kj] + 2aimjwkn — amipkn) + e
+2B(vinjpkey — Uj??f[hkr])] ®

as the electromagnetic Weyl tensor associated with the LWF. It is now straightforward to
analyse Cyu to conclude (Synge 1964, Kramer et al 1980) that for the bounded field
produced by a point-charge in arbitrary motion, Cyjy is of type II in the Petrov classification
‘in analogy with the general case of RT solutions in general relativity. In this general case
there are two non-degenerate null Debever-Penrose vectors which could be important for
studying other properties of the LwF. If, however, the 4-acceleration vanishes but not the
3-velocity, v, then Cyju is of type D in the Petrov classification. In the two cases analysed
(i.e. arbitrary or vanishing 4-acceleration with v 3= (), the null 4-vector k" (= x" —z" (¢)) is
a doubly-degenerate Debever—Penrose vector (Synge 1964, Kramer et al 1980); this follows
from the relation

Ciripmknmk k" = 0. (10

Therefore, &7 must point toward the principal null-direction of the bounded parts of the
Faraday and Maxwell tensors associated with the LWF:
2
Fok, = %k“ Ty, = fﬁzk“. an
Finally, if both the 4-acceleration and the 3-velocity vanish, a" = v =0, then Cijjy =0, Le.
a Coulomb field is of type O in the Petrov classification.

What happens with the radiative part of the LWF? For such a part, we cannot construct
a conformal tensor using the analogy with the spin-tensor and therefore it cannot be Petrov-
classified. We may say, however, that using the expression for F2? given in (1), it is
straightforward to check that FR"" Frap =0, and €409 Fﬁd ng = 0. That is, the radiative part
of an LWF is a null field and thus it may be algebraically classified as in Steward (1990).
We might use this result to extend our analogy further and relating F&* to the type-N RT
solutions (Kramer ¢ a! 1980). We have to keep in mind though that, strictly, we have not
Petrov-classified the radiative part of 2 LWF and thus calling the LWF type N to extend the
analogy is pushing the terminology too far.

Summarizing, the bounded part of an LWF follows the path Il — D — O in the Penrose
diagram as the motion of the point-charge changes from arbitrary, to constant, to the special
case of vanishing 4-acceleration with vanishing 3-velocity; analogous behaviour occurs on
specializing RT solutions (Kramer et al 1980). The radiative part of the LWF is always (in
some cases trivially) a null electromagnetic field.
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