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LE'ITER TO THE EDITOR 
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Abstract. The existing analogies between the Lienard-Wmhen elechomagnetic field (LWF) 
produced by a moving charge and the Robinson-Tmlman solutions (ET) of general relativity 
are further enlarged by showing chat the Petrov type of the bounded pm of an LW is the 
same as that of a generic FZ solution. We argue lhal it is possible to define an elemmagnetio 
conformal tensor by using a suppotential previously found for the LWF. The conformal tensor 
so wnsmcted allows us to 'Petmv-ClarSiFy' lhat pm of lhe LWF. 

Analogies between classical electrodynamics and general relativity have been known for a 
long time. It is known, for example, that gravitational effects may be formally described 
as if they were electromagnetic phenomena in a medium (Synge 1960, Landau and Lifshitz 
1975) and, correspondingly, that electromagnetic phenomena in nonmagnetic media may 
also be formally described using vacuum Maxwell equations defined on a curved manifold 
endowed with a certain metric (Miiez-Y6pez et a1 1988). Analogies of this sort have 
been studied by Newman (1974) who showed that there are interesting similarities between 
the Li6nard-Wiechert field (LW) produced by an accelerated charge and the Robinson- 
Trautman metrics (RT) of general relativity (Robinson and Trautman 1962). Our purpose in 
this work is to exhibit a further algebraic analogy between the L w  and RT. We show that 
it is possible to define an electromagnetic conformal (or Weyl) tensor Cijkl for the bounded 
part of an LWF which is generally of type II in the Petrov classification, as is precisely 
the case with the most general conformal tensor associated with RT solutions in general 
relativity (Kramer et al 1980, Synge 1964), although we should mention that RT solutions 
can also be specialized to Petrov types D, III, N or 0. Moreover, we might say that the 
non-analogous features found between the LWF and the RT solutions have to do with the 
different physical and mathematical structures of the Maxwell and the Einstein fields. The 
radiative field in the LW solutions is perhaps the main source of differences between the LWF 
and RT metrics. However incomplete, the importance of such analogies has been pinpointed 
by Newman (1974). 

A charged particle moving arbitrarily in Minkowski 4-space produces at points x' on its 
forward light-cone (figure 1) a retarded Lw electromagnetic field (Lwp) which in Heaviside 
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Lorentz units with c = 1 is 

where q is the particle's electric charge, z'(.c) stands for the particle's position on its world- 
line C as a function of the proper-time t, U* = dzb/dT is the 4-velocity, ab = dub/dr is 
the +acceleration, k' x' - ~ ' ( 5 )  so that k' is null: kik' = 0, R -k'u, is the retarded 
distance from P to Q, W = -k'a,, B (1 - W ) / R  is the PlebaMci invariant (Plebahski 
1972). U' = Bur +a' is the Synge vector (Synge 1970), and Xfdl = x,b - x b n  stands 
for antisymmetrization. The first term on the right-hand side of the first line of ( 1 )  is the 
radiative (R) part of the field in the sense that its energy flux is non-vanishing even at large 
distances to the charge, whereas the second term can be regarded as bounded @) to the 
moving point-charge. Such splitting in a sum of terms, one radiative and another bounded 
(Teitelboim 1970), is important for the rest of our discussion. 

Fiyre 1. Kinematics of the world-line C of the point-charge emitting the Lidnard-Wechert 
field. The field-pointx' (P) is on the forward light-cone, z'(r) (Q) is the charge's position on the 
world-line, U]' = dr"/dr is the Cvelocily. a'' = du"/dr is the 4-acceleration, li' x r  - L'(T) 
so k' is null, R = -k'v, is the retarded distance from P IO Q. B ( I  + Va,) /R and 
U' Bur +a'. 

The information about the electromagnetic field energy and momentum is contained in 
a symmetric Maxwell tensor Tab = F;Fh - (FijF'j)qah, where qUh = diag(-1, 1, 1,l) 
is the Minkowski metric. In the case of LWF, this tensor also splits into a radiative and a 
bounded part fleitelboim 1970, van Weert 1974, Gaftoi eta/  1993) as follows 

Tub = Tgh + T$' (2) 

where 

( 3 4  TOh - - s ( a r u r  q2 - R-'WZ)kukh 

and 

(3b) 

where x(&) = Xd + stands for symmetrization. These two parts of the energy- 
momentum tensor are dynamically independent in the sense that each one satisfies separately 
the continuity equation 

1 T lh  = $ ($ + khah) + Bk('vh) - R-'(1 - 2W)k"kb 

Tub R.h - - Tub B.h 0. (4) 
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It has been shown (van Weert 1974) that (4) implies the existence of a super-potential 
_- 

KOhc generating the Maxwell energy-momentum tensor according to 

Tub = KPj'". (5) 

We are only interested in the bounded part of the energy-momentum tensor so, from 
now on and for the sake of simplicity, we remove the subscript B from all the tensors 
as the bounded part is the only one in which we are interested. The expression for the 
superpotential generating the bounded part of the energy-momentum tensor of LWF is (van 
Weert 1974, Aquino et al 1993, L6pez-Bonilla et al 1994, Gaftoi et al 1994) 

(6) 1 Khjc = - -(4W - 3)V[hkjlkc - 4a[hkjlkc + %jkh - 4R4 q2 r R 
which obviously fulfils equation (5). 

An analysis of the superpotential (6) carried out in Newman-Unti coordinates (Aquino 
er a1 1993) has shown that both the algebraic and the differential properties of Kak 
are identical to those of the so-called Lanczos spin-tensor introduced in general relativity 
(Lanczos 1962, Ares-deParga et'al 1989, L6pez-Bonilla et al 1993). These features hint 
toward taking advantage of the similarities between Kuk and the spin-tensor for defining an 
electromagnetic Weyl tensor which may allow a Petrov classification of the hounded part of 
the LWF to be carried out. We do thii later. However, before doing that, let us point out that 
the radiative part of an LW can also be generated by an appropriate superpotential which, 
however, has not the structure of a spin-tensor. Thence, it cannot be used to generate an 
electromagnetic conformal tensor or to 'Petrov-classify' the radiative part of an LWF. 

The superpotential K.hc previously introduced for generating the bounded part of the 
energy-momentum tensor for the LWF has been shown to be an intrinsic angular momentum 
density for the electromagnetic field of a moving charge (Arm-dePwga et a1 1990). From 
the explicit expression for Kahc given in (6), it is simple to check that the superpotential 
has the following properties: 

Kuk = -Khat ( 7 4  
Kuhc + Khcu + Kcd = 0 (7b) 
K,",, = 0 (74 

Ku;,c = 0. (74 

and 

These properties are important for our discussion since they are identical (Lanczos 1962, 
L6peaBonilla et ai 1993) to those fulfilled by the spin-tensor associated with solutions of 
Einstein field equation-and so defined on curved manifolds. The only proviso we need 
is to interpret the covariant derivatives required by the spin-tensor as the ordinary partial 
derivatives appearing in (7). It is now natural to regardKijk as a sort of spin-tensor for the 
LWF and use it as the generator of an electromagnetic conformal tensor c j jk ,  appropriate for 
the problem. This use of the superpotential may be further justified in the already pinpointed 
fact.that Kijk is related to the intrinsic angular momentum of the charge's field. We may 
then use the relationship between the spin-tensor and the tensor Cij.u in the form valid on 
a curved manifold to construct a conformal tensor for the bounded part of an LWF: 

C . .  p m  - - K . .  y 1 . m  - K .  p m , t  . + K . .  rmj.r - K .  rmr.j + VjmK<?,a - ~ijK/?,= + 'lriK/j.u - ~rmKj(li.~ 
(8) 



(9) 

as the electromagnetic Weyl tensor associated with the LWF. It is now straightforward to 
analyse Cij, to conclude (Synge 1964, Kramer et nl 1980) that for the bounded field 
produced by a point-charge in arbitrary motion, Cjj, is of type I1 in the Petrov classifcation 
in analogy with the general case of KT solutions in general relativity. In this general case 
there are two non-degenerate null Debever-Penrose vectors which could be important for 
studying other properties of the LWF. If, however, the 4-acceleration vanishes but not the 
3-velocity, U, then CUjk; is of type D in the Petrov classifcarion. In the two cases analysed 
(i.e. arbitrary or vanishing 4-acceleration with v # 0), the null 4-vector kr(= x' - z'(z)) is 
a doubly-degenerate Debever-Penrose vector (Synge 1964, Kramer et a1 1980); this follows 
from the relation 

Cjri~,kn1Kki = 0. (10) 
Therefore, k' must point toward the principal null-direction of the bounded parts of the 
Faraday and Maxwell tensors associated with the LWF: 

Finally, if both the 4-acceleration and the 3-velocity vanish, a' = v = 0, then Cijkl = 0, i.e. 
a Coulombfield is of type 0 in the Petrov clussifcation. 

What happens with the radiative part of the LWF? For such a part, we cannot construct 
a conformal tensor using the analogy with the spin-tensor and therefore it cannot be Petrov- 
classified. We may say, however, that using the expression for F;h given in (1). it is 
straightforward to check that F$F&h = 0, and e,brd FidF$ = 0. That is, the radiative part 
of an LWF is a null field and thus it may be algebraically classified as in Steward (1990). 
We might use this result to extend our analogy further and relating Flh to the typeN RT 
solutions (Kramer et al 1980). We have to keep in mind though that, strictly, we have not 
Petrov-classified the radiative part of a LWF and thus calling the LWF type N to extend the 
analogy is pushing the terminology too far. 

Summarizing, the bounded part of an LWF follows the path II + D + 0 in the Penrose 
diagram as the motion of the point-charge changes from arbitrary, to constant, to the special 
case of vanishing 4-acceleration with vanishing 3-velocity; analogous behaviour occurs on 
specializing RT solutions (Kramer et al 1980). The radiative part of the LWF is always (in 
some cases trivially) a null electromagnetic field. 
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